- A body of mass m = 10 kg is attached to one end of a wire of length 0.3 m. The maximum angular speed (in rad s⁻¹) with which it can be rotated about its other end in space station is (Breaking stress of wire = $4.8 \times 10^7 \,\mathrm{Nm}^{-2}$ and area of cross-
 - (Breaking stress of wire = $4.8 \times 10^7 \text{ Nm}^{-2}$ and area of crosection of the wire = 10^{-2} cm^2) is

9 Jan 2020 I

Mass of the body,
$$m = 10 \text{ kg}$$

Breaking stress, $\sigma = 4.8 \times 10^7 \text{ Nm}^{-2}$

 $T = Ml\omega^2$

 $\sigma = \frac{T}{4} = \frac{ml\omega^2}{4}$

(4) Given: Wire length, l = 0.3 m

Area of cross-section, $a = 10^{-2} \text{ cm}^2$

 $\frac{ml\omega^2}{A} \le 48 \times 10^7 \Rightarrow \omega^2 \le \frac{\left(48 \times 10^7\right)A}{ml}$

 $\Rightarrow \omega^2 \le \frac{\left(48 \times 10^7\right)\left(10^{-6}\right)}{10 \times 3} = 16 \Rightarrow \omega_{\text{max}} = 4 \text{ rad/s}$

Maximum angular speed $\omega = ?$